Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.

Identifieur interne : 002114 ( Main/Exploration ); précédent : 002113; suivant : 002115

Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.

Auteurs : Jennifer Dumont [France] ; Sarita Keski-Saari ; Markku Kein Nen ; David Cohen ; Nathalie Ningre ; Sari Kontunen-Soppela ; Pierre Baldet ; Yves Gibon ; Pierre Dizengremel ; Marie-Noëlle Vaultier ; Yves Jolivet ; Elina Oksanen ; Didier Le Thiec

Source :

RBID : pubmed:24682617

Descripteurs français

English descriptors

Abstract

Ozone is an air pollutant that causes oxidative stress by generation of reactive oxygen species (ROS) within the leaf. The capacity to detoxify ROS and repair ROS-induced damage may contribute to ozone tolerance. Ascorbate and glutathione are known to be key players in detoxification. Ozone effects on their biosynthesis and on amino acid metabolism were investigated in three Euramerican poplar genotypes (Populus deltoides Bartr. × Populus nigra L.) differing in ozone sensitivity. Total ascorbate and glutathione contents were increased in response to ozone in all genotypes, with the most resistant genotype (Carpaccio) showing an increase of up to 70%. Reduced ascorbate (ASA) concentration at least doubled in the two most resistant genotypes (Carpaccio and Cima), whereas the most sensitive genotype (Robusta) seemed unable to regenerate ASA from oxidized ascorbate (DHA), leading to an increase of 80% of the oxidized form. Increased ascorbate (ASA + DHA) content correlated with the increase in gene expression in its biosynthetic pathway, especially the putative gene of GDP-l-galactose phosphorylase VTC2. Increased cysteine availability combined with increased expression of γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2) genes allows higher glutathione biosynthesis in response to ozone, particularly in Carpaccio. In addition, ozone caused a remobilization of amino acids with a decreased pool of total amino acids and an increase of Cys and putrescine, especially in Carpaccio. In addition, the expression of genes encoding threonine aldolase was strongly induced only in the most tolerant genotype, Carpaccio. Reduced ascorbate levels could partly explain the sensitivity to ozone for Robusta but not for Cima. Reduced ascorbate level alone is not sufficient to account for ozone tolerance in poplar, and it is necessary to consider several other factors including glutathione content.

DOI: 10.1093/treephys/tpu004
PubMed: 24682617


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.</title>
<author>
<name sortKey="Dumont, Jennifer" sort="Dumont, Jennifer" uniqKey="Dumont J" first="Jennifer" last="Dumont">Jennifer Dumont</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR1137 EEF, F-54280 Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR1137 EEF, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keski Saari, Sarita" sort="Keski Saari, Sarita" uniqKey="Keski Saari S" first="Sarita" last="Keski-Saari">Sarita Keski-Saari</name>
</author>
<author>
<name sortKey="Kein Nen, Markku" sort="Kein Nen, Markku" uniqKey="Kein Nen M" first="Markku" last="Kein Nen">Markku Kein Nen</name>
</author>
<author>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
</author>
<author>
<name sortKey="Ningre, Nathalie" sort="Ningre, Nathalie" uniqKey="Ningre N" first="Nathalie" last="Ningre">Nathalie Ningre</name>
</author>
<author>
<name sortKey="Kontunen Soppela, Sari" sort="Kontunen Soppela, Sari" uniqKey="Kontunen Soppela S" first="Sari" last="Kontunen-Soppela">Sari Kontunen-Soppela</name>
</author>
<author>
<name sortKey="Baldet, Pierre" sort="Baldet, Pierre" uniqKey="Baldet P" first="Pierre" last="Baldet">Pierre Baldet</name>
</author>
<author>
<name sortKey="Gibon, Yves" sort="Gibon, Yves" uniqKey="Gibon Y" first="Yves" last="Gibon">Yves Gibon</name>
</author>
<author>
<name sortKey="Dizengremel, Pierre" sort="Dizengremel, Pierre" uniqKey="Dizengremel P" first="Pierre" last="Dizengremel">Pierre Dizengremel</name>
</author>
<author>
<name sortKey="Vaultier, Marie Noelle" sort="Vaultier, Marie Noelle" uniqKey="Vaultier M" first="Marie-Noëlle" last="Vaultier">Marie-Noëlle Vaultier</name>
</author>
<author>
<name sortKey="Jolivet, Yves" sort="Jolivet, Yves" uniqKey="Jolivet Y" first="Yves" last="Jolivet">Yves Jolivet</name>
</author>
<author>
<name sortKey="Oksanen, Elina" sort="Oksanen, Elina" uniqKey="Oksanen E" first="Elina" last="Oksanen">Elina Oksanen</name>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24682617</idno>
<idno type="pmid">24682617</idno>
<idno type="doi">10.1093/treephys/tpu004</idno>
<idno type="wicri:Area/Main/Corpus">002250</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002250</idno>
<idno type="wicri:Area/Main/Curation">002250</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002250</idno>
<idno type="wicri:Area/Main/Exploration">002250</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.</title>
<author>
<name sortKey="Dumont, Jennifer" sort="Dumont, Jennifer" uniqKey="Dumont J" first="Jennifer" last="Dumont">Jennifer Dumont</name>
<affiliation wicri:level="3">
<nlm:affiliation>INRA, UMR1137 EEF, F-54280 Champenoux, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INRA, UMR1137 EEF, F-54280 Champenoux</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Champenoux</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Keski Saari, Sarita" sort="Keski Saari, Sarita" uniqKey="Keski Saari S" first="Sarita" last="Keski-Saari">Sarita Keski-Saari</name>
</author>
<author>
<name sortKey="Kein Nen, Markku" sort="Kein Nen, Markku" uniqKey="Kein Nen M" first="Markku" last="Kein Nen">Markku Kein Nen</name>
</author>
<author>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
</author>
<author>
<name sortKey="Ningre, Nathalie" sort="Ningre, Nathalie" uniqKey="Ningre N" first="Nathalie" last="Ningre">Nathalie Ningre</name>
</author>
<author>
<name sortKey="Kontunen Soppela, Sari" sort="Kontunen Soppela, Sari" uniqKey="Kontunen Soppela S" first="Sari" last="Kontunen-Soppela">Sari Kontunen-Soppela</name>
</author>
<author>
<name sortKey="Baldet, Pierre" sort="Baldet, Pierre" uniqKey="Baldet P" first="Pierre" last="Baldet">Pierre Baldet</name>
</author>
<author>
<name sortKey="Gibon, Yves" sort="Gibon, Yves" uniqKey="Gibon Y" first="Yves" last="Gibon">Yves Gibon</name>
</author>
<author>
<name sortKey="Dizengremel, Pierre" sort="Dizengremel, Pierre" uniqKey="Dizengremel P" first="Pierre" last="Dizengremel">Pierre Dizengremel</name>
</author>
<author>
<name sortKey="Vaultier, Marie Noelle" sort="Vaultier, Marie Noelle" uniqKey="Vaultier M" first="Marie-Noëlle" last="Vaultier">Marie-Noëlle Vaultier</name>
</author>
<author>
<name sortKey="Jolivet, Yves" sort="Jolivet, Yves" uniqKey="Jolivet Y" first="Yves" last="Jolivet">Yves Jolivet</name>
</author>
<author>
<name sortKey="Oksanen, Elina" sort="Oksanen, Elina" uniqKey="Oksanen E" first="Elina" last="Oksanen">Elina Oksanen</name>
</author>
<author>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Ascorbic Acid (biosynthesis)</term>
<term>Biomass (MeSH)</term>
<term>Biosynthetic Pathways (drug effects)</term>
<term>Biosynthetic Pathways (genetics)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Glutathione (biosynthesis)</term>
<term>Ozone (pharmacology)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (biosynthèse)</term>
<term>Acides aminés (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Glutathion (biosynthèse)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Ozone (pharmacologie)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Voies de biosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Voies de biosynthèse (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Glutathion</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Gene Expression Regulation, Plant</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Voies de biosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Voies de biosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Ozone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Genes, Plant</term>
<term>Genotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Gènes de plante</term>
<term>Génotype</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ozone is an air pollutant that causes oxidative stress by generation of reactive oxygen species (ROS) within the leaf. The capacity to detoxify ROS and repair ROS-induced damage may contribute to ozone tolerance. Ascorbate and glutathione are known to be key players in detoxification. Ozone effects on their biosynthesis and on amino acid metabolism were investigated in three Euramerican poplar genotypes (Populus deltoides Bartr. × Populus nigra L.) differing in ozone sensitivity. Total ascorbate and glutathione contents were increased in response to ozone in all genotypes, with the most resistant genotype (Carpaccio) showing an increase of up to 70%. Reduced ascorbate (ASA) concentration at least doubled in the two most resistant genotypes (Carpaccio and Cima), whereas the most sensitive genotype (Robusta) seemed unable to regenerate ASA from oxidized ascorbate (DHA), leading to an increase of 80% of the oxidized form. Increased ascorbate (ASA + DHA) content correlated with the increase in gene expression in its biosynthetic pathway, especially the putative gene of GDP-l-galactose phosphorylase VTC2. Increased cysteine availability combined with increased expression of γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2) genes allows higher glutathione biosynthesis in response to ozone, particularly in Carpaccio. In addition, ozone caused a remobilization of amino acids with a decreased pool of total amino acids and an increase of Cys and putrescine, especially in Carpaccio. In addition, the expression of genes encoding threonine aldolase was strongly induced only in the most tolerant genotype, Carpaccio. Reduced ascorbate levels could partly explain the sensitivity to ozone for Robusta but not for Cima. Reduced ascorbate level alone is not sufficient to account for ozone tolerance in poplar, and it is necessary to consider several other factors including glutathione content. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24682617</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>03</Month>
<Day>31</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.</ArticleTitle>
<Pagination>
<MedlinePgn>253-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpu004</ELocationID>
<Abstract>
<AbstractText>Ozone is an air pollutant that causes oxidative stress by generation of reactive oxygen species (ROS) within the leaf. The capacity to detoxify ROS and repair ROS-induced damage may contribute to ozone tolerance. Ascorbate and glutathione are known to be key players in detoxification. Ozone effects on their biosynthesis and on amino acid metabolism were investigated in three Euramerican poplar genotypes (Populus deltoides Bartr. × Populus nigra L.) differing in ozone sensitivity. Total ascorbate and glutathione contents were increased in response to ozone in all genotypes, with the most resistant genotype (Carpaccio) showing an increase of up to 70%. Reduced ascorbate (ASA) concentration at least doubled in the two most resistant genotypes (Carpaccio and Cima), whereas the most sensitive genotype (Robusta) seemed unable to regenerate ASA from oxidized ascorbate (DHA), leading to an increase of 80% of the oxidized form. Increased ascorbate (ASA + DHA) content correlated with the increase in gene expression in its biosynthetic pathway, especially the putative gene of GDP-l-galactose phosphorylase VTC2. Increased cysteine availability combined with increased expression of γ-glutamylcysteine synthetase (GSH1) and glutathione synthetase (GSH2) genes allows higher glutathione biosynthesis in response to ozone, particularly in Carpaccio. In addition, ozone caused a remobilization of amino acids with a decreased pool of total amino acids and an increase of Cys and putrescine, especially in Carpaccio. In addition, the expression of genes encoding threonine aldolase was strongly induced only in the most tolerant genotype, Carpaccio. Reduced ascorbate levels could partly explain the sensitivity to ozone for Robusta but not for Cima. Reduced ascorbate level alone is not sufficient to account for ozone tolerance in poplar, and it is necessary to consider several other factors including glutathione content. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dumont</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>INRA, UMR1137 EEF, F-54280 Champenoux, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keski-Saari</LastName>
<ForeName>Sarita</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keinänen</LastName>
<ForeName>Markku</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ningre</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kontunen-Soppela</LastName>
<ForeName>Sari</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldet</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gibon</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dizengremel</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vaultier</LastName>
<ForeName>Marie-Noëlle</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jolivet</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oksanen</LastName>
<ForeName>Elina</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Le Thiec</LastName>
<ForeName>Didier</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>66H7ZZK23N</RegistryNumber>
<NameOfSubstance UI="D010126">Ozone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010126" MajorTopicYN="N">Ozone</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">air pollution</Keyword>
<Keyword MajorTopicYN="N">antioxidants</Keyword>
<Keyword MajorTopicYN="N">metabolism</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24682617</ArticleId>
<ArticleId IdType="pii">tpu004</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpu004</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Champenoux</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Baldet, Pierre" sort="Baldet, Pierre" uniqKey="Baldet P" first="Pierre" last="Baldet">Pierre Baldet</name>
<name sortKey="Cohen, David" sort="Cohen, David" uniqKey="Cohen D" first="David" last="Cohen">David Cohen</name>
<name sortKey="Dizengremel, Pierre" sort="Dizengremel, Pierre" uniqKey="Dizengremel P" first="Pierre" last="Dizengremel">Pierre Dizengremel</name>
<name sortKey="Gibon, Yves" sort="Gibon, Yves" uniqKey="Gibon Y" first="Yves" last="Gibon">Yves Gibon</name>
<name sortKey="Jolivet, Yves" sort="Jolivet, Yves" uniqKey="Jolivet Y" first="Yves" last="Jolivet">Yves Jolivet</name>
<name sortKey="Kein Nen, Markku" sort="Kein Nen, Markku" uniqKey="Kein Nen M" first="Markku" last="Kein Nen">Markku Kein Nen</name>
<name sortKey="Keski Saari, Sarita" sort="Keski Saari, Sarita" uniqKey="Keski Saari S" first="Sarita" last="Keski-Saari">Sarita Keski-Saari</name>
<name sortKey="Kontunen Soppela, Sari" sort="Kontunen Soppela, Sari" uniqKey="Kontunen Soppela S" first="Sari" last="Kontunen-Soppela">Sari Kontunen-Soppela</name>
<name sortKey="Le Thiec, Didier" sort="Le Thiec, Didier" uniqKey="Le Thiec D" first="Didier" last="Le Thiec">Didier Le Thiec</name>
<name sortKey="Ningre, Nathalie" sort="Ningre, Nathalie" uniqKey="Ningre N" first="Nathalie" last="Ningre">Nathalie Ningre</name>
<name sortKey="Oksanen, Elina" sort="Oksanen, Elina" uniqKey="Oksanen E" first="Elina" last="Oksanen">Elina Oksanen</name>
<name sortKey="Vaultier, Marie Noelle" sort="Vaultier, Marie Noelle" uniqKey="Vaultier M" first="Marie-Noëlle" last="Vaultier">Marie-Noëlle Vaultier</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Dumont, Jennifer" sort="Dumont, Jennifer" uniqKey="Dumont J" first="Jennifer" last="Dumont">Jennifer Dumont</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002114 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002114 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24682617
   |texte=   Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24682617" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020